انتخاب نمونه در روش پژوهش تجربی

انتخاب نمونه در روش پژوهش تجربی

معمولا در پژوهش های تجربی از نمونه هایی استفاده می شود که نسب به مداخله های آزمایشی حساس باشند. به طور مثال، اگر قرار است موثر بودن مداخله ی شناخت درمانی را در کاهش...

چرخش عامل ها در تحلیل عاملی Factor Rotation

چرخش عامل ها در تحلیل عاملی Factor Rotation

تمامی محموله های بدست آمده از محموله های اولیه، با یک تبدیل متعامد، توانایی یکسان برای تولید دوباره ماتریس کواریانس (یا همبستگی) دارند. از جبر ماتریس ها می دانیم که یک تبدیل متعامد به...

تفاوت آزمون های ناپارامتریک و پارامتریک در spss

تفاوت آزمون های ناپارامتریک و پارامتریک در spss

مهم ترین وجه تمایز آزمون های پارامتریک و غیرپارامتریک، در نوع داده ها و پیش فرض های زیر بنایی آن ها است؛ به بیان ساده می توان گفت از آزمون های پارامتریک استفاده می...

داده های از دست رفته در spss

داده های از دست رفته در spss

داده های از دست رفته: وفتی مشغول تحقیق ، به ویژه بر روی انسان ها هستید ، به ندرت ممکن است داده های کاملی از هر نفر به دست بیاورید .

مقایسات مستقل یا contrast در spss

مقایسات مستقل یا contrast در spss

از مقایسات (contrast) چند گانه ای نظیر «توکی»، «دانکن»، «دانت»، «شِفِه» و ... زمانی استفاده می شود که فقط مقایسۀ سادۀ کلیه ترکیبات دوگانۀ ممکن، مورد نظر باشد.

نمودار خطی در تحلیل آماری پایان نامه با spss

نمودار خطی در تحلیل آماری پایان نامه با spss

نمودار خطی در تحلیل آماری پایان نامه با spss به شما امکان می دهد میانگین نمره های یک متغیر پیوسته را در کنار مقادیر مختلف یک متغیر طبقه ای را بررسی کنید.

مثال برای نمودار ساقه و برگ stem and leaf در spss

مثال برای نمودار ساقه و برگ stem and leaf در spss

در نرم افزار spss متغیری به نام DCommunicayion و با «برچسب» (lable)، Disconnected Communication ایجاد کرده و داده های فوق را در آن تایپ کنید، شکل 28-2.

آموزش آزمون جدول توافقی در spss

آموزش آزمون جدول توافقی در spss

برای مطالعه توصیفی داده های چند متغیرۀ «گسسته» (Discrete) از جداول چند بعدی که به «جداول توافقی» (contingency) موسوم است استفاده می کنیم. با استفاده از جداول توافقی می توانیم مقادیر مربوط به «معیارهای...

نحوه کشیدن و رسم نمودار دایره ای در spss

نحوه کشیدن و رسم نمودار دایره ای در spss

وقتی به دلایلی نتوانیم داده ها را به صورت «کمی» مشخص کنیم، مثلا در مورد منابع انرژی که به رده های زغال، گاز طبیعی، نفت خام و غیره تقسیم می شود، باز هم نمایش...

نکاتی درباره ضرایب همبستگی در spss

نکاتی درباره ضرایب همبستگی در spss

ضرایب همبستگی (مثل همبستگی گشتاوری پیرسون ) خلاصه ای از جهت و نیرومندی رابطه خطی دو متغیر را فراهم می کنند.

آزمون اثرهای بین موردی در spss

آزمون اثرهای بین موردی در spss

در محیط نرم افزاری SPSS به «طرح بلوک تصادفی» (Random block design)، اصطلاحا «اثرهای بین موردی» (between- subjects effects) گفته می شود.

رسم نمودار ساقه و برگ stem and leaf در spss

رسم نمودار ساقه و برگ stem and leaf در spss

یک نمایش «ساقه و برگ» (stem and leaf) اطلاعاتی راجع به الگوی مشاهدات در یک آرایه از داده ها فراهم نموده و به کشف تمرکز یا خوشه ای بودن مقادیر خاص داده ها کمک...

موسیقی درمانی برای کودکان اوتیسم با مثال (مطلب روانشناسی با منبع)

موسیقی درمانی برای کودکان اوتیسم با مثال (مطلب روانشناسی با منبع)

 تونی ویگرام علاوه بر تدریس در دانشگاه آلبورگ دانمارک، در انگلستان به حرفه موسیقی درمانی مشغول است. او در این کشور با کودکان مبتلا...

اهداف موسیقی درمانی در روانشناسی

اهداف موسیقی درمانی در روانشناسی

از جمله اهداف موسیقی درمانی اثرات هیجانی آن است.

فنون موسیقی درمانی در روانشناسی

فنون موسیقی درمانی در روانشناسی

 یادگیری نحوه نواختن ابزار موسیقی، تمرینی عالی در زمینه موسیقی است تا از این طریق توانایی های حرکتی و مکانیکی را در افراد سست...

موسیقی درمانی در پزشکی (مطلب با ذکر منبع)

موسیقی درمانی در پزشکی (مطلب با ذکر منبع)

موسیقی از راه گوش وارد بدن می شود و استخوانها مثل چنگال در حال ارتعاش، از خود آهنگ تولید می کنند.

مدل ها و روش های موسیقی درمانی در روانشناسی

مدل ها و روش های موسیقی درمانی در روانشناسی

تاکنون روش های موسیقی درمانی به صورت منظم و طبقه بندی شده ارائه نشده اند. این روشها شامل موارد زیر می شوند:

تکنیک های استفاده از موسیقی درمانی در روانشناسی

تکنیک های استفاده از موسیقی درمانی در روانشناسی

 ۱. استفاده از سکوت اگر قطعه ای موسیقی را بشناسیم، زمانی که قطع می شود، متوجه می شویم.

تاریخچه موسیقی درمانی در روانشناسی

تاریخچه موسیقی درمانی در روانشناسی

تاریخچه موسیقی درمانی در جایگاه حرفه ای مراقبتی و درمانی چیست؟ ایده کاربرد موسیقی برای شفابخشی که روی سلامتی و رفتار تأثیر می گذارد،...

موسیقی درمانی نوزادان در روانشناسی

موسیقی درمانی نوزادان در روانشناسی

 نتایج موثر موسیقی درمانی باعث شدند ایمان بسیاری از متخصصان، مانند دکتر فرد شوارتز ، به موسیقی و ارزش های آن در نوزدان تقویت...

اهمیت قصه گویی در رشد اخلاقی کودکان

اهمیت قصه گویی در رشد اخلاقی کودکان

 برخی اندیشمندان قصه گویی را شیوه ای طبیعی برای ساختن جهان میدانند.

روانشناسی قصه گویی و داستان کودک

روانشناسی قصه گویی و داستان کودک

روش های قصه درمانی برای درک رفتار انسان طی سالهای اخیر در حوزه های مختلف روانشناسی فراگیر شده است.

تاثیر قصه ها بر ذهن کودکان

تاثیر قصه ها بر ذهن کودکان

 اکثر مادر کودکی های خود روزهایی را به یاد می آوریم که بزرگترها برای سرگرم کردن و یا کوتاه نمودن شب های بلند زمستان...

اثر داستان و قصه گویی بر مغز کودکان

اثر داستان و قصه گویی بر مغز کودکان

 بسیاری از روانشناسان معتقدند گفتن قصه در تکامل مغز نوزادان نقش مهمی را ایفا می کند و می توان آن را به دوره دوم...

اختلال استرس پس ازسانحه و ملاک های آن

اختلال استرس پس ازسانحه و ملاک های آن

هنگامی که پس از تجربه یک رویداد آسیب زا، علائم استرس به مدت بیش از یک ماه ادامه پیدا می کند، ممکن است فرد...

مدل فراشناختی اختلال استرس پس از سانحه

مدل فراشناختی اختلال استرس پس از سانحه

 قبل از توصیف مدل فراشناختی اختلال استرس پس از سانحه، بررسی ماهیت در جاماندگی، پایش تهدید و رفتارهای خودتنظیمی غیرانطباقی تشکیل دهنده سندرم شناختی...

تعریف میانگین و واریانس به زبان ساده

دانشجویان زیادی در مفاهیم ابتدایی مباحث آمار مشکلاتی دارند. برای اطلاع از تعریف میانگین و واریانس به زبان ساده این مقاله را بخوانید.

محاسبه میانگین ها و واریانسها :

مجموعه نمره های {5و4و3و2و1}=X را در نظر بگیرید . میانگین به صورت زیر تعریف می شود :

 

nتعداد موارد در مجموعه نمره ها ∑▒ یعنی مجموع یا «آنها را جمع کنید» ؛ X به معنای هر یک از نمره هاست .

به عبارت دیگر هر نمره یک X است .

بنابراین ، فرمول می گوید « نمره ها را جمع کرده و مجموع را به تعداد مورد های مجموعه تقسیم کنید . »

 

میانگین مجموعه X برابر 3 است . محاسبه واریانس هر چند به اندازه محاسبه میانگین آسان نیست ، اما باز هم آسان است .

فرمول محاسبه چنین است ،

 

V به معنای واریانس است ، n و ∑ مانند معادله 1-6 هستند . ∑▒X^2 مجموع مجذورها نامیده میشود که نیاز به توضیح دارد .

نمره ها در یک ستون فهرست می شوند .

 

در این محاسبه x انحراف از میانگین است که به صورت زیر تعریف می شود : x =X-M

 

بنابراین برای به دست آوردنx کافی است میانگین را زا همه نمره ها یا X کم کنید .

برای مثال وقتی X=1 باشد ، x=1-3=-2 و هنگامی که X=4 باشد ، x=4-3=+1 خواهد بود . این کار در بالا انجام شده است . اما معادله بالامی گوید هر X باید مجذور شود .

این عمل هم در بالا انجام گرفته است ( به یاد داشته باشید که مجذور یک عدد منفیهمیشه مثبت است ) به عبارت دیگر∑▒X^2 به ما می گوید میانگین را از هر نمره کم کنید تا x به دست آید ، هر x را مجذور کنید تا x2 به دست آید ، و سپس x2 ها را جمع کنید .

سر انجام متوسط x2 با تقسیم ∑▒X^2 بر n ، یعنی تعداد موارد به دست می آید . ∑▒X^2 ، مجموع مجذورها ، یک آماره بسیار مهم است که اغلب آن را به کار می بریم .

اکنون واریانس داده های بالا چنین است :

  واریانس را میانگین مجذورها نیز مینامند ( هر چند با روشی که اندکی با این روش تفاوت دارد محاسبه می شود ) .

به این دلیل آن را چنین می نامند که آشکارا میانگین x2 ها ست . بدیهی است محاسبه میانگین و واریانس دشوار نیست .

پرسش این است : چرا باید میانگین و واریانس محاسبه شوند؟

منطق محاسبه میانگین را به آسانی می توان نشان داد .

میانگین سطح کلی و مرکز ثقل مجموعه ای از اندازه ها را بیان می کند ، و به طور کلی معرف خوبی از سطح خصایص یا عملکرد گروه است .

چنانکه قبلا گفته شد ، در پژوهش های رفتاری برای مطالعه رابطه ها ، میانگینهای گروههای مختلف آزمایشی مقایسه می شوند .

برای مثال ، ممکن است بخواهیم رابطه بین جوّ سازمانی و بارآوری را آزمون کنیم . ممکن است ممکن است سه نوع جو سازمانی را انتخاب کرده و علاقه مند باشیم که بدانیم تاثیر کدام یک از آنها در سطح بارآوری بیشتر است .

در این گونه موارد معمولاً میانگین ها با یکدیگر مقایسه می شوند .

برای مثال ، از سه گروه که هر یک تحت یکی از شرایط سازمانی A_1 〖,A〗_2 〖,A〗_3 کار کرده اند میانگین کدام یک از آنها مثلاً در شاخص بارآوری بیشتر است؟ توضیح منطق محاسبه واریانس و استفاده از آن در تحقیق دشوارتر است . معمولاً در مورد نمره های متداول ، وارینس شاخص پراکندگی مجموعه نمره هاست .

آن به ما می گوید که پرکندگی نمره ها چقدر است . اگر گروهی از دانش آموزان از نظر پیشرفت در خواندن نا همگون باشند ، در این صورت واریانس نمره های آنان در خواندن در مقایسه با گروهی که از نظر پیشرفت در خواندن همگونند بزرگتر خواهد بود .

بنابراین ، واریانس شاخص پراکندگی نمره هاست ...

ادامه دارد...

 


 

Go to top
زوم تک
دوشنبه 3 مهر 1396.
امروز